\(\int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx\) [105]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 357 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {14 a^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{1105 c^5 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-28/221*a^2*(g*cos(f*x+e))^(5/2)/c/f/g/(c-c*sin(f*x+e))^(9/2)/(a+a*sin(f*x+e))^(1/2)+14/663*a^2*(g*cos(f*x+e))
^(5/2)/c^2/f/g/(c-c*sin(f*x+e))^(7/2)/(a+a*sin(f*x+e))^(1/2)+14/1105*a^2*(g*cos(f*x+e))^(5/2)/c^3/f/g/(c-c*sin
(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2)+14/1105*a^2*(g*cos(f*x+e))^(5/2)/c^4/f/g/(c-c*sin(f*x+e))^(3/2)/(a+a*sin
(f*x+e))^(1/2)+4/17*a*(g*cos(f*x+e))^(5/2)*(a+a*sin(f*x+e))^(1/2)/f/g/(c-c*sin(f*x+e))^(11/2)-14/1105*a^2*g*(c
os(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*
x+e))^(1/2)/c^5/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 357, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {2929, 2931, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=-\frac {14 a^2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{1105 c^5 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}+\frac {4 a \sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{5/2}}{17 f g (c-c \sin (e+f x))^{11/2}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x])^(11/2),x]

[Out]

(4*a*(g*Cos[e + f*x])^(5/2)*Sqrt[a + a*Sin[e + f*x]])/(17*f*g*(c - c*Sin[e + f*x])^(11/2)) - (28*a^2*(g*Cos[e
+ f*x])^(5/2))/(221*c*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(9/2)) + (14*a^2*(g*Cos[e + f*x])^(5/2
))/(663*c^2*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(7/2)) + (14*a^2*(g*Cos[e + f*x])^(5/2))/(1105*c
^3*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)) + (14*a^2*(g*Cos[e + f*x])^(5/2))/(1105*c^4*f*g*Sq
rt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (14*a^2*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]]*Ellipti
cE[(e + f*x)/2, 2])/(1105*c^5*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2929

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(2*n + p + 1))), x] - Dist[b*((2*m + p - 1)/(d*(2*n + p + 1))), Int[(g*Cos[e + f*x])^p*(a + b*
Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 2931

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {(7 a) \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{9/2}} \, dx}{17 c} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {\left (21 a^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}} \, dx}{221 c^2} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {\left (7 a^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx}{221 c^3} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\left (7 a^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{1105 c^4} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (7 a^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{1105 c^5} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (7 a^2 g \cos (e+f x)\right ) \int \sqrt {g \cos (e+f x)} \, dx}{1105 c^5 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (7 a^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{1105 c^5 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{17 f g (c-c \sin (e+f x))^{11/2}}-\frac {28 a^2 (g \cos (e+f x))^{5/2}}{221 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{663 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^3 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {14 a^2 (g \cos (e+f x))^{5/2}}{1105 c^4 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {14 a^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{1105 c^5 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.55 (sec) , antiderivative size = 532, normalized size of antiderivative = 1.49 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=-\frac {14 (g \cos (e+f x))^{3/2} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^{11} (a (1+\sin (e+f x)))^{3/2}}{1105 f \cos ^{\frac {3}{2}}(e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (c-c \sin (e+f x))^{11/2}}+\frac {(g \cos (e+f x))^{3/2} \sec (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^{11} \left (\frac {14}{1105}+\frac {8}{17 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^8}-\frac {80}{221 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^6}+\frac {14}{663 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4}+\frac {14}{1105 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^2}+\frac {16 \sin \left (\frac {1}{2} (e+f x)\right )}{17 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^9}-\frac {160 \sin \left (\frac {1}{2} (e+f x)\right )}{221 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7}+\frac {28 \sin \left (\frac {1}{2} (e+f x)\right )}{663 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5}+\frac {28 \sin \left (\frac {1}{2} (e+f x)\right )}{1105 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3}+\frac {28 \sin \left (\frac {1}{2} (e+f x)\right )}{1105 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}\right ) (a (1+\sin (e+f x)))^{3/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (c-c \sin (e+f x))^{11/2}} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x])^(11/2),x]

[Out]

(-14*(g*Cos[e + f*x])^(3/2)*EllipticE[(e + f*x)/2, 2]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^11*(a*(1 + Sin[e +
 f*x]))^(3/2))/(1105*f*Cos[e + f*x]^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*(c - c*Sin[e + f*x])^(11/2))
 + ((g*Cos[e + f*x])^(3/2)*Sec[e + f*x]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^11*(14/1105 + 8/(17*(Cos[(e + f*
x)/2] - Sin[(e + f*x)/2])^8) - 80/(221*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6) + 14/(663*(Cos[(e + f*x)/2] -
Sin[(e + f*x)/2])^4) + 14/(1105*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2) + (16*Sin[(e + f*x)/2])/(17*(Cos[(e +
 f*x)/2] - Sin[(e + f*x)/2])^9) - (160*Sin[(e + f*x)/2])/(221*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7) + (28*S
in[(e + f*x)/2])/(663*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5) + (28*Sin[(e + f*x)/2])/(1105*(Cos[(e + f*x)/2]
 - Sin[(e + f*x)/2])^3) + (28*Sin[(e + f*x)/2])/(1105*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])))*(a*(1 + Sin[e +
f*x]))^(3/2))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*(c - c*Sin[e + f*x])^(11/2))

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 3.76 (sec) , antiderivative size = 1578, normalized size of antiderivative = 4.42

method result size
default \(\text {Expression too large to display}\) \(1578\)

[In]

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(11/2),x,method=_RETURNVERBOSE)

[Out]

-2/3315*I/f*(g*cos(f*x+e))^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*g*a/(cos(f*x+e)^2*sin(f*x+e)-3*cos(f*x+e)^2-4*sin(f*
x+e)+4)/(-c*(sin(f*x+e)-1))^(1/2)/c^5/(1+cos(f*x+e))*(21*I*cos(f*x+e)^2*sin(f*x+e)+7*I*cos(f*x+e)*sin(f*x+e)-4
39*I+84*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))
^(1/2)*cos(f*x+e)^2-84*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/
(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^2+21*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)
*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^4-21*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)
),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^4+42*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*
x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^3-42*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-co
t(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^3+780*I*tan(f*x+e)*sec(f*x+e)+168*(cos(f*x+e)/(1+cos(f*x+e)))
^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)*sin(f*x+e)-168*(cos(f*x+e)/(
1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)*sin(f*x+e)-147
*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)^
2+147*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*cos(f*
x+e)^2-336*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*c
os(f*x+e)-84*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x
+e)))^(1/2)+336*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1
/2)*cos(f*x+e)+84*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+co
s(f*x+e)))^(1/2)-336*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*
x+e)),I)*tan(f*x+e)+336*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot
(f*x+e)),I)*tan(f*x+e)+336*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-
cot(f*x+e)),I)*sec(f*x+e)-336*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+
e)-cot(f*x+e)),I)*sec(f*x+e)+168*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f
*x+e)-cot(f*x+e)),I)*sec(f*x+e)^2-168*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(
csc(f*x+e)-cot(f*x+e)),I)*sec(f*x+e)^2-161*I*sin(f*x+e)-84*I*cos(f*x+e)^2-691*I*cos(f*x+e)+780*I*sec(f*x+e)^2+
612*I*tan(f*x+e)+948*I*sec(f*x+e)-168*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(
csc(f*x+e)-cot(f*x+e)),I)*tan(f*x+e)*sec(f*x+e)+168*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)
*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*tan(f*x+e)*sec(f*x+e))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.16 (sec) , antiderivative size = 396, normalized size of antiderivative = 1.11 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {2 \, {\left (21 \, a g \cos \left (f x + e\right )^{4} - 266 \, a g \cos \left (f x + e\right )^{2} + 502 \, a g + {\left (105 \, a g \cos \left (f x + e\right )^{2} + 278 \, a g\right )} \sin \left (f x + e\right )\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} + 21 \, {\left (5 i \, \sqrt {2} a g \cos \left (f x + e\right )^{4} - 20 i \, \sqrt {2} a g \cos \left (f x + e\right )^{2} + 16 i \, \sqrt {2} a g + {\left (-i \, \sqrt {2} a g \cos \left (f x + e\right )^{4} + 12 i \, \sqrt {2} a g \cos \left (f x + e\right )^{2} - 16 i \, \sqrt {2} a g\right )} \sin \left (f x + e\right )\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 21 \, {\left (-5 i \, \sqrt {2} a g \cos \left (f x + e\right )^{4} + 20 i \, \sqrt {2} a g \cos \left (f x + e\right )^{2} - 16 i \, \sqrt {2} a g + {\left (i \, \sqrt {2} a g \cos \left (f x + e\right )^{4} - 12 i \, \sqrt {2} a g \cos \left (f x + e\right )^{2} + 16 i \, \sqrt {2} a g\right )} \sin \left (f x + e\right )\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{3315 \, {\left (5 \, c^{6} f \cos \left (f x + e\right )^{4} - 20 \, c^{6} f \cos \left (f x + e\right )^{2} + 16 \, c^{6} f - {\left (c^{6} f \cos \left (f x + e\right )^{4} - 12 \, c^{6} f \cos \left (f x + e\right )^{2} + 16 \, c^{6} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="fricas")

[Out]

1/3315*(2*(21*a*g*cos(f*x + e)^4 - 266*a*g*cos(f*x + e)^2 + 502*a*g + (105*a*g*cos(f*x + e)^2 + 278*a*g)*sin(f
*x + e))*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c) + 21*(5*I*sqrt(2)*a*g*cos(f*x
 + e)^4 - 20*I*sqrt(2)*a*g*cos(f*x + e)^2 + 16*I*sqrt(2)*a*g + (-I*sqrt(2)*a*g*cos(f*x + e)^4 + 12*I*sqrt(2)*a
*g*cos(f*x + e)^2 - 16*I*sqrt(2)*a*g)*sin(f*x + e))*sqrt(a*c*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4,
 0, cos(f*x + e) + I*sin(f*x + e))) + 21*(-5*I*sqrt(2)*a*g*cos(f*x + e)^4 + 20*I*sqrt(2)*a*g*cos(f*x + e)^2 -
16*I*sqrt(2)*a*g + (I*sqrt(2)*a*g*cos(f*x + e)^4 - 12*I*sqrt(2)*a*g*cos(f*x + e)^2 + 16*I*sqrt(2)*a*g)*sin(f*x
 + e))*sqrt(a*c*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e))))/(5*c^6*f
*cos(f*x + e)^4 - 20*c^6*f*cos(f*x + e)^2 + 16*c^6*f - (c^6*f*cos(f*x + e)^4 - 12*c^6*f*cos(f*x + e)^2 + 16*c^
6*f)*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(11/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {11}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(11/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{11/2}} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(11/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(11/2), x)